Skip to content

Real time aptamer-based tracking of circulating therapeutic drugs

The goal of personalized medicine is to precisely tailor treatment to the individual. To this end, the ability to measure drugs in the body rapidly and in real time would hold the promise to revolutionalise healthcare by delivering the right drug, at the right dose, and at the right time. The development of such technologies including immunoassays or HPLC-MS, however, faces significant challenges such as:

  • Lower sensitivity and selectivity
  • Lengthy sample preparation
  • Batch processing and addition of exogenous reagents
  • Single time-point measurement
  • Stability issues for extended period of time

Continuous and real time monitoring of the drugs could facilitate administration of a therapeutic dose that is continuously optimized for maximal efficacy and minimal side effects for a specific diseased patient.

Aptamer based electrochemical sensors (E-AB) have shown to address these challenges and have demonstrated their promise as a tool for real time drug monitoring. E-AB employs an electrode-bound, redox-reporter-modified aptamer as their recognition element. Binding of the target molecule to this aptamer induces a conformational change that produces an easily measured electrochemical output, without needing reagent additions or wash steps.

To this end, following researchers developed a real time E-AB’s capable of continuously tracking a wide range of circulating drugs in living subjects.

Real-time, aptamer-based tracking of doxorubicin in vivo

Ferguson et al., 2013 developed a real time microfluidic E-AB for measuring therapeutic in vivo concentrations of doxorubicin (DOX, a chemotherapeutic drug) in live rats and human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Upon binding to the target molecule, the aptamer probe underwent a conformational change that modulated the redox current and generated an electrochemical signal. The signal gain provided a direct measurement of DOX concentration with LOD of 10 nM in buffer.

Real time DOX measurement in live rats with a lowest dose of 0.1 mg/m2, showed observable signal change resulting in a peak concentration of 0.13 uM – a therapeutically relevant range for human dosing. Importantly, the sensor did not respond to ifosfamide (Ifex), mesna, mitomycin-C (MTC), dacarbazine (DTIC), or cisplatin (CDDP) – agents commonly administered with DOX. The sensor required no exogenous reagents, operated at room temperature and could be reconfigured to measure different target molecules by exchanging probes in a modular manner.

Real time, aptamer-based biosensor for tenofovir detection in vivo

Aliakbarinodehi et al., 2017 developed a highly selective and sensitive aptamer based biosensor (AptaFET) for detection of tenofovir (TFV), an anti-retroviral small molecule drug approved for the treatment of HIV and Hepatitis B. This biosensor was based on the combination of aptamers for target recognition and 6-mercapto-1-hexanol (MCH) field effect transistors for the transduction of the drug-probe interaction to an electric signal. The sensor was selective for TFV in both buffer and plasma and showed a linear detection range of 1 nM to 100 nM, compared with clinical range of 20 nM to 860 nM, indicating sufficient sensitivity for clinical application.

Overall, the performance of such E-AB in terms of LOD and linear range is better or comparable to other biosensors that are suitable for point of care (POC) analytical applications. This proves the capability of the E-AB to be utilized for continuous monitoring of a wide range of small molecules in human plasma, improving the overall efficacy and safety of treatment.

At Aptamer Group Ltd, we are involved in continuous development of similar aptamer-based biosensors for therapeutic small molecule targets and even protein biomarkers using our high affinity aptamers. We have successfully developed aptamers against various chemotherapeutic drugs including irinotecan and imatinib, which are now available for purchase. If you would like more information on such platforms, please get in touch.


Aliakbarinodehi N, Jolly P, Bhalla N, et al. Aptamer-based Field-Effect Biosensor for Tenofovir Detection. Sci Rep. 2017;7:44409. Published 2017 Mar 15. doi:10.1038/srep44409.

Idili A, Arroyo-Currás N, Ploense KL, et al. Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan in situ in the living body. Chem Sci. 2019;10(35):8164‐8170. Published 2019 Jul 22. doi:10.1039/c9sc01495k

Ferguson BS, Hoggarth DA, Maliniak D, et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med. 2013;5(213):213ra165. doi:10.1126/scitranslmed.3007095.

Explore website  Resource library Sign up to our Newsletter


aptamersE-ABelectrochemical sensorspersonalized medicinereal time drug monitoring

Start your next project with Aptamer Group

Contact one of our experts today